Numerical Algorithm for Solving General Linear Elliptic Quaternionic Matrix Equations
نویسندگان
چکیده
In this study, we develop a general method to solve the linear elliptic quaternionic matrix equations by means of real representation quaternion matrices. A pseudocode for our approach that provides solution is expressed. Moreover, apply well-known Slyvester and Kalman Yakubovich over algebra.
منابع مشابه
A matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملA numerical algorithm for solving a class of matrix equations
In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$ by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولa matrix lsqr algorithm for solving constrained linear operator equations
in this work, an iterative method based on a matrix form of lsqr algorithm is constructed for solving the linear operator equation $mathcal{a}(x)=b$ and the minimum frobenius norm residual problem $||mathcal{a}(x)-b||_f$ where $xin mathcal{s}:={xin textsf{r}^{ntimes n}~|~x=mathcal{g}(x)}$, $mathcal{f}$ is the linear operator from $textsf{r}^{ntimes n}$ onto $textsf{r}^{rtimes s}$, $ma...
متن کاملa numerical algorithm for solving a class of matrix equations
in this paper, we present a numerical algorithm for solving matrix equations $(a otimes b)x = f$ by extending the well-known gaussian elimination for $ax = b$. the proposed algorithm has a high computational efficiency. two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamental journal of mathematics and applications
سال: 2021
ISSN: ['2645-8845']
DOI: https://doi.org/10.33401/fujma.888705